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SUMMARY Genotyping studies of medically important fungi have addressed elu-
cidation of outbreaks, nosocomial transmissions, infection routes, and genotype-
phenotype correlations, of which secondary resistance has been most intensively in-
vestigated. Two methods have emerged because of their high discriminatory power
and reproducibility: multilocus sequence typing (MLST) and microsatellite length
polymorphism (MLP) using short tandem repeat (STR) markers. MLST relies on
single-nucleotide polymorphisms within the coding regions of housekeeping genes.
STR polymorphisms are based on the number of repeats of short DNA fragments,
mostly outside coding regions, and thus are expected to be more polymorphic and
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more rapidly evolving than MLST markers. There is no consensus on a universal typ-
ing system. Either one or both of these approaches are now available for Candida
spp., Aspergillus spp., Fusarium spp., Scedosporium spp., Cryptococcus neoformans,
Pneumocystis jirovecii, and endemic mycoses. The choice of the method and the
number of loci to be tested depend on the clinical question being addressed. Next-
generation sequencing is becoming the most appropriate method for fungi with no
MLP or MLST typing available. Whatever the molecular tool used, collection of clini-
cal data (e.g., time of hospitalization and sharing of similar rooms) is mandatory for
investigating outbreaks and nosocomial transmission.

KEYWORDS genotyping, short tandem repeat, multilocus sequence typing, molds,
yeasts, Aspergillus spp., Fusarium spp, Scedosporium spp., Candida spp., Cryptococcus
neoformans, Pneumocystis jirovecii, endemic mycoses, microsatellite length
polymorphism

INTRODUCTION

More and more fungal species are being associated with human diseases, either as
allergen or toxin producers or as infectious agents causing invasive and systemic

infections (1). The increased incidence of invasive fungal diseases (IFDs) has been linked
to the growing number of patients receiving immunosuppressive treatment in hema-
tology and solid organ transplant units. Moreover, many patients in intensive care units
are also considered immunocompromised, while immunosuppressive drugs (e.g., ste-
roids or anti-tumor necrosis factor [anti-TNF]drugs) are increasingly being used in more
medical fields. Given the multiplicity of ways to develop IFDs, it will be important to
explain the physiopathology and transmission of fungal diseases, and fungal genotyp-
ing will be an important part of strategies to achieve this.

Genotyping of infectious agents can help with understanding the evolution, geo-
graphical distribution, and spread of disease, providing insights into genomic recom-
bination, linkage, and mode of reproduction. Beyond population genetics, genotyping
can be used to study local disease epidemiology (outbreaks, nosocomial acquisition,
and patient-to-patient transmission), route of transmission (airborne, waterborne, food-
borne, or through contaminated intravenous or contact lens solutions), specific clinical
questions (infection due to patient isolates or from environmental or animal isolates
and distinction between reoccurrence and new infection), and genotype-phenotype
correlations (acquisition and spread of antifungal resistance and delineation of geno-
types with higher virulence), and this list is not exhaustive.

Here we focus on fungi of medical interest for which genotyping is available and can
impact patient care, such as prevention of infection or cross-contamination. Therefore,
the genetics of the fungi will not be discussed as long as there is no direct implication
reported for patient care, acknowledging that the distinction between the different
uses and studies using genotyping is artificial. Similarly, when typing studies are focused
mainly on deciphering the number of species in a given fungal group for taxonomic
reasons, these studies will not be considered here. This is the case for diverse species,
such as Aspergillus niger (2), Sporothrix schenkii (3), Malassezia spp. (4), or Trichosporon
spp. (5), for which the current studies are more focused on taxonomy.

DNA-BASED METHODS DEVELOPED DURING THE 1980s AND 1990s

Several methods developed during the 1980s have now been practically aban-
doned. Pulsed-field gel electrophoresis approaches require spheroplast preparation for
chromosome preparation and require several days to perform, and the results are not
polymorphic enough for genotyping purposes. Restriction fragment length polymor-
phism (RFLP) based on DNA digestion, Southern blotting, and probe hybridization was
widely used during the 1990s. However, this approach requires demanding DNA
preparation steps to obtain long DNA fragments and homogenous digestion by restriction
enzymes, gel electrophoresis, ethidium bromide staining, Southern blot transfer, and
probe (usually radiolabeled) hybridization. Although these methods could be discrim-
inating, depending on the probe used, and despite some possibility of digitizing the

Alanio et al. Clinical Microbiology Reviews

July 2017 Volume 30 Issue 3 cmr.asm.org 672

http://cmr.asm.org


results after scanning and imaging manipulations (6), they were hardly reproducible
between laboratories, and most of them have been abandoned for genotyping. The
PCR-based methods developed in the 1990s were less labor-intensive and included
randomly amplified polymorphic DNA analysis (RAPD), single-strand conformation
polymorphism analysis (SSCP), and amplified fragment length polymorphism analysis
(AFLP) approaches.

RAPD was very popular because of its simplicity and low cost. No previous knowl-
edge of the DNA sequences of the fungal species is needed for RAPD, which depends
on amplification using short primers (�10 bp long), amplification under low-stringency
conditions, and migration in an agar or acrylamide gel. However, RAPD’s simplicity also
has drawbacks. Because of its low-stringency conditions and use of random primers, the
reproducibility of RAPD is low, even within a single laboratory. RAPD is also dependent on
DNA quality, does not detect accidental mixtures, and is not amenable to digitization
and storage in a database for subsequent comparisons. Moreover, the nature of the
RAPD polymorphism is unknown, hampering reliable taxonomic analyses, and the
ploidy of fungi cannot be assessed. The use of RAPD should be restricted to initial
assessment of the degree of polymorphism before applying more reliable methods. For
instance, the commercial repetitive sequence-based PCR (DiversiLab; bioMérieux) was
tested on 99 Candida parapsilosis isolates, and all were shown to have identical profiles,
which could have led to the conclusion of cross-contamination. However, microsatellite
length polymorphism (MLP) typing identified 56 different genotypes among this
collection of 99 isolates, with a completely different conclusion (7).

SSCP is based on conformational differences of single-stranded nucleotide se-
quences of identical length. After denaturation of double-strand DNA amplicons,
single-stranded DNA folds in 3 dimensions, assuming unique conformational states
based on DNA sequence. If the amplified DNA sequences are different, they migrate
differently on a denaturing electrophoresis gel, despite having equal nucleotide
lengths. SSCP shares several limitations with RAPD, including low reproducibility, lack
of portability, impossibility of detecting accidental mixtures, and homoplasia. SSCP was
developed in human genetics for the detection of heterozygosity and has since been
superseded by sequencing approaches.

AFLP is based on double enzymatic digestion (e.g., by EcoR1 with rare cuts and MseI
with frequent cuts), ligation of adaptors, amplification with one labeled primer, and
migration in denaturing gels. Although very discriminating and based on stringent PCR
conditions, this method is subject to many variables (e.g., ligation yield and DNA
quality) and has been restricted to a few laboratories.

CURRENT PCR-BASED METHODS

One of the main disadvantages of the methods presented above is the impossibility
of detecting species identification errors. Because genotyping addresses differences
between isolates, it is mandatory to start with pure colonies, which is not always
possible when multiple colonies are obtained or when working directly with the clinical
sample. In designing species primers, microsatellite length polymorphism (MLP) typing
and multilocus sequence typing (MLST) circumvent these pitfalls. If no amplification is
obtained, the first explanation is an incorrect identification of the colony instead of
technical reasons.

MLP Typing

Microsatellite length polymorphism (MLP) typing is based on the amplification of
short tandem DNA repeats (STRs) located at numerous loci in eukaryotic genomes. The
diversity of STRs and their mutation rates is high, although the variation rate depends
on the species (8). The term microsatellite was coined after the name “satellite” used to
characterize the layer separated from the bulk DNA upon centrifugation in cesium
chloride. Since this “satellite” layer was shown to correspond to long repeated DNA
fragments, the word minisatellite was used to name short DNA repeats. Today, the term
microsatellite is often replaced by STR, which is more understandable. The term
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variable-number tandem repeat (VNTR) is sometimes used as a synonym of STR, but it
usually refers to repeats longer than 5 to 6 bp. The STRs reported for typing the
different fungal species described below are usually made from di- to pentanucleotides
and are repeated between 5 and 50 times.

STRs located outside coding regions are preferred for genotyping applications
because of the lack of adaptation pressure and hence an expected higher variability
than for STRs in coding regions. When located inside the gene or in the regulatory
flanking regions, STR variations can lead to phenotypic modifications, such as those
described in human triplet extension diseases with low polymorphism (9). Changes in
repeat numbers arise from replication slippage, with successions of slippages at a single
repeat unit over several generations producing alleles of various lengths. The polymor-
phism can then be easily identified by digitization after migration in capillary electro-
phoresis as used for sequencing applications. Slippage events depend on the length
and the repeat number of each STR, as well as across different species (10).

The initial step in developing a practical microsatellite typing strategy is to identify
STRs within the genome of the investigated species (11), for which several types of
software are available (e.g., Tandem Repeats Finder [12] and Websat [13] [http://
omictools.com/microsatellite-detection-category]). Next, primers are designed in the
flanking regions of the STR, assuming that these regions are identical for all isolates of
a given species. However, because only the length of the PCR product is used for
analysis, there is a risk of wrongly concluding that an STR marker is identical between
isolates, whereas sequence variations are present in the flanking regions. For example,
a high-resolution DNA melting analysis of a single STR marker of Candida albicans
showed different melting curves, which were shown to be due a single-nucleotide
polymorphism (SNP) in the flanking region using a SNaPshot minisequencing approach
(14). Furthermore, the absence of an amplification product suggests an error in the
species identification, which represents an internal quality control (see above).

After PCR with one of the two primers labeled, the size of amplicons is calculated
according to their mobility in capillary electrophoresis. Since only the size of the PCR
product is considered, perfect STRs (i.e., with only one type of nucleotide repeat) are
preferable to distinguish different alleles (e.g., different mixtures of di-tri- or tetranucle-
otide repeats on the same DNA strand can lead to the same size). Several loci can be
tested simultaneously using primers with different dyes, allowing multiplexing. As the
amplification product lengths are calculated automatically, according to standards,
decimal values can be obtained. Including several reference strains with a known
number of repeats allows these decimal values to be converted into base pair numbers
(15). For diploid organisms, heterozygotes can be easily identified, since MLP typing
detects different alleles at a given locus. Therefore, the MLP method not only can detect
misidentification, because no amplification is observed due to the species-specific
nature of the primers, but also can detect mixtures of different isolates when an
inappropriate number of alleles is obtained for a species known to be haploid or diploid
(15, 16).

The principle limitations of the MLP method from the technical point of view are
errors in the amplification products caused by difficulties of the DNA polymerases in
correctly amplifying repeated elements. It is therefore common to observe stutter
peaks (17). Some polymerases are also prone to adding a supplementary adenine,
changing the estimated amplicon size. All these artifacts depend on the STR and the
experimental conditions, which need to be controlled (17). For heterozygous fungi, the
amplification process strongly favors the shorter alleles, so that longer alleles can be
overlooked, underlying the need to optimize the PCR to detect low-intensity peaks in
each run. For these technical reasons, MLP typing results are portable (i.e., suitable for
interlaboratory comparisons) only if results are expressed relative to an allelic ladder. An
allelic ladder can be built with a well-defined mixture of alleles with a known number
of repeats, at best defined after Sanger sequencing, and used in the same run as the
samples to create reference positions (18, 19) (Fig. 1). As a consequence, no public
databases are currently available to our knowledge.
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MLST

Multilocus sequence typing (MLST) relies on the sequencing of multiple loci and was
developed primarily by bacteriologists (20). MLST makes use of SNPs within selected
regions. The retained loci are usually housekeeping genes to ensure that every isolate
of a given species is correctly amplified, although some evolutionary constraints are
expected to limit mutations in such essential genes. Nevertheless, the rate of nucleotide
change in housekeeping genes is expected to be sufficient to discriminate between
isolates. A preliminary step in MLST is to design primers outside the tested locus in
flanking nonvariable regions. After PCR amplification and Sanger sequencing, the point
mutations define sequence type (ST) or diploid sequence type (DST) for haploid or
diploid microorganisms, respectively. These STs and DSTs correspond to numbers
assigned to each unique combination of genotypes. The method is technically robust,
providing the sequences are of adequate quality. MLST is then unambiguous and easily
portable. As a consequence, numerous websites are presently available for asking
whether the ST or DST has been already reported (Table 1). One important issue in
MLST is the selection of adequate target genes (locus) and the number of loci needed
for discriminating isolates (see below). Another limitation of MLST for diploid organisms
is the impossibility of assigning a haplotype to a given isolate when heterozygosity is
observed, because the loci are sequenced independently (Table 2).

There are no technical limitations of MLST when dealing with pure colonies ob-
tained in culture. For genotyping directly from clinical samples, MLST typing is limited
by the low detection rate for mixtures due to Sanger sequencing, which cannot detect
minority alleles below 20 to 30% (21).

FIG 1 Allele assignment using the CDC3 allelic ladder for DNA 1 and DNA 2. Peaks (p1 to p7) are the different alleles in the ladder (in
green). The red peaks represent the internal size standard GeneFLo 625, with sizes in bp below each peak. Isolate 1 is p3-p4 heterozygous,
and isolate 2 is p2 homozygous (18).
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Comparison of MLP and MLST Methods

For the medical applications listed in the introduction, the main feature of a
genotyping method is its discriminatory power (DP) (the average probability that two
unrelated specimens randomly chosen will be assigned to different types by the
method), expressed as follows:

D � 1 �
1

N(N � 1)
�
j � 1

s

nj(nj � 1)

where N is the number of isolates, s is the number of groups, and xj is the number of
isolates falling into the jth group (22). Indeed, the principal issue being addressed is
whether isolates are similar to each other; the nature of the polymorphism and the
genetic distance are secondary considerations. The higher the DP, the more discrimi-
nant the genotyping method is. Confidence in the typing results is assumed for DP
values greater than 0.9 (22). As a consequence, the number of markers to be tested
before concluding identity between isolates depends on the DP of the genotyping
method used.

When MLP and MLST methods have been compared, the relatedness of isolates has
been similar (18, 23, 24), suggesting that either method can be used (15). However, the
MLP method was shown to be more polymorphic with a higher DP. When testing 100
isolates of Aspergillus fumigatus, nine STR markers provided 96 different genotypes with
a DP of 0.9994 (25), whereas seven MLST markers had a DP of only 0.93 (26). Similarly,
only three STR markers performed as well as seven MLST markers for typing C. albicans
(27). For Candida glabrata, MLST was found insufficient for genotyping compared to a
system of nine STR markers (28). These differences can be explained by a higher
instability and mutation rate of STRs than of SNPs located in housekeeping genes.
Therefore, MLST could rather be used to assess broad subpopulations of a given
species, whereas MLP could be used for tracing strains (28). The main differences
between MLP and MLST typing are summarized in Table 2.

TABLE 1 Fungi of medical importance, with MLP and/or MLST typing when available

Fungal species MLP MLST MLST website(s)

Molds
Aspergillus fumigatus Yes Yes http://pubmlst.org/ (no updating)
Aspergillus flavus Yes No
Aspergillus terreus Yes No
Aspergillus niger No No
Fusarium spp. No Yes http://www.cbs.knaw.nl/fusarium/,

http://isolate.fusariumdb.org/blast.php
Pseudallescheria/Scedosporium

species complex
No Yes http://mlst.mycologylab.org/

Yeasts
Candida albicans Yes Yes http://pubmlst.org/calbicans/
Candida dubliniensis No Yes
Candida glabrata Yes Yes http://pubmlst.org/cglabrata/
Candida tropicalis Yes Yes http://pubmlst.org/ctropicalis/
Candida parapsilosis Yes No
Pichia kudriavzevii (Candida krusei) No Yes http://pubmlst.org/ckrusei/
Cryptococcus neoformans Yes Yes http://mlst.mycologylab.org/
Cryptococcus gattii No Yes http://mlst.mycologylab.org/

Pneumocystis jirovecii Yes Yes http://mlst.mycologylab.org/

Endemic mycoses
Talaromyces marneffei Yes Yes
Histoplasma capsulatum Yes Yes
Blastomyces dermatitidis Yes No
Paracoccidioides spp. Yes No
Coccidioides spp. Yes No

Dermatophytes No No
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The MLP method offers better options for speed, throughput, workload, and, as a
consequence, cost. However, the workload depends on the number of markers to be
tested for a given question. For example, when aiming to rapidly test the similarity of
isolates at the beginning of an epidemic, testing a few loci with either method can
rapidly provide answers regarding the clonal or nonclonal hypothesis for the epidemic.
Thus, the choice between the two methods depends on the goal of the genotyping, the
equipment available and the skills of each team.

If DP is the main feature for distinguishing between isolates, it is also important to
group isolates even for medical applications, e.g., for zoonoses to know whether an
animal can serve as a reservoir for human contamination. The most commonly used
method to compare or group genotyping data is the unweighted pair group method
with arithmetic mean (UPGMA). The UPGMA tree is built based on a distance matrix and
uses agglomerative hierarchical clustering based on the average linkage method (29).
This method allows visualization of clusters of isolates (Fig. 2). However, no definite
threshold in terms of distance could be assigned to describe what is a cluster and how
distant are different isolates or clusters.

Whatever the method retained for genotyping, several major points have to be
underlined. The first one is the quality of the sampling for calculating the DPs of the
methods. The isolates and reference strains used must be independent, which is
difficult when collecting isolates from a given ward in a given hospital (22). Isolates
should come from different hospitals or from different individuals from different
populations. The second point is the quality of the clinical data associated with the
isolates, which is very demanding when implementing prospective collections. The
third point, more specific to outbreak investigations, is the chronological history, which
can support the possible transmission according to what is known from the natural
behavior of the fungus investigated.

ASPERGILLUS MOLDS
Aspergillus fumigatus

Aspergillus fumigatus is the most common species responsible for aspergillosis,
including noninvasive diseases (30, 31) and invasive diseases (32). Typing methods
were developed initially to understand the pathophysiology of human aspergillosis and
route of contamination, then to investigate population genetics of A. fumigatus (which
is not reviewed here), and finally to understand the origin of azole-resistant isolates
recovered from naive or azole-preexposed patients. An MLST scheme using seven or

TABLE 2 Comparison of MLP and MLST for typing medically important fungi

Parameter MLP MLST

Previous knowledge on DNA sequences Yes Yes
Marker selection Free software available

for selecting STRs
Analyze of housekeeping genes through sequencing

Species specificity Yes Yes
Analytical result interpretation Skill needed Simple
Risk of assignment of two different PCR products

to a given allele
Possiblea No

Heterozygosity detection Simple No haplotype assignment possible for diploid organisms
Minority allele detection (mixture) At least 10%b Above 40%c

Discriminatory power High Moderate
Reproducibility High High
Digitization Yes Yes
Portability Currently limited Excellent
Data bank available No Yes
Ease of used High High
Cost Moderate High
Labor-intensive No Yes
aWhen the fragment length is the only result considered, there is a possibility of sequence differences in the STR flanking regions.
bThreshold not formally defined for every species.
cSensitivity threshold of Sanger sequencing.
dAssuming that sequencing equipment is available.
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eight housekeeping genes has been shown to have a DP of 0.93, which was considered
insufficient (26), and MLP methods have since been preferred.

A first MLP typing, based on four dinucleotide repeats of A. fumigatus and with a DP
of 0.994, was published in 1998 (33). This set of four markers compared favorably to the
previously reported RFLP and RAPD typing methods (34). More recently, a set of nine
STRs with a DP of 0.9994 has been developed (25), and an allelic ladder was proposed
for homogenizing the results between laboratories (19). Comparison of these nine STR
markers and AFLP-based data showed very few discrepancies (35), and comparison
with MLST (26) showed that MLP typing and MLST had the highest and lowest DPs,
respectively (36). A simpler method, cell surface protein (CSP) typing, has been devel-
oped based on the sequencing of one gene containing repeated motifs. CSP typing
identified 18 and 19 different genotypes in collections of 209 (37) and 164 (38) isolates,
respectively. CSP typing was thus positioned between MLST and MLP typing in terms
of DP (37, 39). CSP typing is simple to perform and has good interlaboratory repro-
ducibility (40).

Pathophysiology of aspergillosis. The first relevant studies that aimed at under-
standing the pathophysiology of invasive aspergillosis (IA) were conducted using RFLP
and a probe containing the repeated sequence Afut after Southern blot hybridization

FIG 2 Minimum spanning tree analysis of an MLP typing study of 114 A. fumigatus isolates from patients with or without voriconazole
preexposure (62). The distances were calculated after the number of allelic mismatches among the MLP profiles. Each genotype (Gt)
corresponds to one cycle, with the number of isolates of the same Gt indicated inside. The smallest circles contain one isolate, and the size
increases logarithmically with the number of isolates. The higher the number of different markers between linked genotypes, the thicker
the connecting bars. The numbers of allelic mismatches between genotypes are indicated in black circles on the connecting bars. A clonal
complex (CC) is defined as Gts having a single allelic mismatch with at least one other Gt of the complex and appears as colored zones
surrounding some groups of circles. The only azole-resistant isolate sampled has a unique Gt (Gt30) (dotted black circle). The red circles
indicate the isolates that harbor serial SNPs in cyp51A sequence compared to the wild type (green circles). Note that all but 3 isolates
harboring SNPs are grouped in CC2 (blue) and CC4 (pink). The comparison of allelic profiles provides the relatedness between the different
GTs using the minimum spanning tree (MStree) method (BioNumerics software v6.5; Applied Maths, Sint Maartens-Latem, Belgium). MLP
data were treated as multistate categories, assuming that all changes are equally probable. A maximal allelic divergence of one marker
to group genotypes into CCs was used (368). The genotypes not grouped in CCs had at least two allelic mismatches with any other Gt
and were considered singletons.
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(41, 42). Debeaupuis et al. genotyped 849 isolates that showed no geographical
clustering and no clustering between environmental and clinical isolates (41). A study
of 700 environmental and clinical isolates from various hospitals in France found that
85% of genotypes were unique and that some identical genotypes could be isolated
from different hospital sites and could persist over time. In addition, the same geno-
types could be recovered from one specific environment and in patients exposed to
that environment (42). In parallel, an MLP genotyping method using four markers was
developed and, in similar studies, also failed to detect clustering between environmen-
tal and clinical isolates (33, 43). Similar observations have also been reported in other
settings using various methods (44–46). Using MLP typing, avian isolates were shown
to harbor genotypes also observed in human IA, suggesting that either environmental
or animal genotypes could infect immunocompromised human individuals (47).

The second issue addressed by genotyping was whether the patient can be infected
by one or several genotypes. Several studies have reported the recovery of identical
clinical isolates from different deep tissue sites after dissemination (35, 43, 48, 49).
Although a multiplicity of genotypes in iterative samples over the course of IA was
described during the 1990s, this was deemed rare (43, 50). However, more recent
publications have demonstrated that several different genotypes can contribute to IA
(35, 48, 49). It is possible that earlier typing methods were not sensitive enough to
detect initial mixed genotypes. Alternatively, this genotype multiplicity could be ex-
plained by a current more chronic evolution of invasive IA compared to that in the
1990s (32, 51), allowing contamination by several genotypically different isolates.
Additionally, a more chronic course of IA could enable microevolution to occur, as
previously proposed (48). Thus, although IA typically arises from a single contaminating
genotype, several genotypes may be encountered, especially when the risk factors for
IA persist.

In cystic fibrosis patients with chronic Aspergillus colonization, respiratory samples
can harbor various colonization patterns (e.g., multiple unique genotypes, a predom-
inant genotype, or genotypes succeeding each other) (52). Interestingly, some geno-
types could be recovered consistently over long periods, suggesting the possibility of
prolonged colonization or a better adaptation to the human respiratory epithelium
(53).

MLP typing has also being used to investigate several outbreaks of IA (54–56).
However, because of the possible recovery of the same genotype in different places
and at different times (41–43), it is impossible to say when and where the patients were
infected when relying only on genotyping. Given the high DPs of the MLP typing
methods, when a patient is contaminated by the same genotype as that found in the
environment, there is a high likelihood that the isolates are identical (57). However, the
time and site of patient contamination cannot be ascertained (43). Thus, the risk of
nosocomial acquisition is real, and all sources of potential contamination should be
investigated for the benefit of the immunocompromised patients. The chronology (i.e.,
contamination in a theater or in an incubator) is suggestive of a common source
whatever the genotyping results. Even the identification of several genotypes cannot
exclude that the patients were infected at the same time and the same place. CSP
typing can be a first approach to avoid additional genotyping investigations when the
CSP results are already different (56). Moreover, when dealing with cutaneous asper-
gillosis, the patients can be the source of the environmental contamination and not the
other way around (54). Therefore, when investigating A. fumigatus outbreaks, the stress
should be put on the clinical and environmental investigation.

Azole-resistant Aspergillus fumigatus. Genotyping can be particularly useful for
understanding azole-resistant acquisition of A. fumigatus due to mutations in the
CYP51A protein, the main protein responsible for azole susceptibility. Two hypotheses
were proposed: either the acquisition of resistance in the patient under the pressure of
azole therapy or the inhalation of azole-resistant isolates with subsequent development
of IA. Both possibilities were shown to occur.

Several publications have well documented the occurrence of resistance in patients
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treated with azole. In a patient treated with itraconazole over two periods of 6 months
and 4 to 7 months for aspergilloma, Chen et al. showed using RAPD that azole-
susceptible and azole-resistant isolates harboring the M220I mutation shared the same
genotype (58). Such evolution after prolonged azole treatment has been described with
other mutations (G448S, G54E, P216L, and F219I) in the CYP51A protein and other
mechanisms of resistance (59–61). The impact of azole therapy in patients could also be
less obvious than the occurrence of in vitro resistance of A. fumigatus isolates. For
instance, the itraconazole MICs of A. fumigatus isolates recovered from patients under
voriconazole prophylaxis were increased, although without reaching the threshold
defined for resistance (62). These isolates carried serial polymorphisms (F46Y, M172V,
N248T, D255E, or E427K) and were associated with two clonal complexes (CCs) (Fig. 2).
These results suggested that azole even at a prophylactic dosage could select specific
genotypes associated with cyp51A polymorphisms and higher itraconazole MICs (62).

The inhalation of azole-resistant isolates is the second mechanism for developing
azole-resistant IA. Azole-resistant isolates with a promoter duplication (TR34) and point
mutation (L98H) in the CYP51A, which have been well described in The Netherlands,
clustered together using MLP typing in a clade separated from azole-susceptible
isolates (25, 63). In a genotyping study comparing environmental and clinical azole-
resistant isolates, all itraconazole-resistant isolates tested harbored unique genotypes,
whereas the environmental TR34/L98H isolates clustered with clinical TR34/L98H isolates
(64). These findings highly suggested the environmental origin of the azole-resistant
TR34/L98H isolates recovered from humans. Overall, these TR34/L98H isolates have been
found in several countries all over the world (65). Using CSP markers, European
TR34/L98H isolates showed less diversity than resistant isolates harboring other muta-
tions or wild-type isolates, suggesting that the acquisition of this genetic event was
recent (66). This phenomenon was also observed for TR46/Y121F/T289A isolates first
reported in The Netherlands (67) and later shown to cluster with TR46/Y121F/T289A
isolates from India, whereas German isolates with the same mutation did not (68). Thus,
the wide spread of azole-resistant isolates might not result from uniform mechanisms.
Finally, the TR34/L98H isolates were shown to be able to outcross with wild-type isolates
of different origins, allowing propagation of the genetic abnormality to various wild-
type genetic backgrounds (66). However, another report has suggested that Dutch
azole-resistant isolates reproduced and disseminated mainly asexually (69).

Given the diversity of the mechanisms of acquisition of azole resistance, several
laboratories suggest regular screening, collecting, and reporting of azole resistance of
A. fumigatus isolates from immunocompromised patients (70, 71). Such collections
could be useful not only to estimate the prevalence of azole resistance for deciphering
the best antifungal strategy (65) but also for further genotyping analyses.

Aspergillus flavus

Although several studies using RAPD, RFLP, AFLP, SSCP, or MLST have been de-
scribed, most of these studies aimed to identify new species within the section Flavi
(72). Only a few of these studies have focused on genotyping A. flavus sensu stricto
isolates. A. flavus IA is much less common than A. fumigatus IA, accounting for �10%
all cases (32, 73, 74).

Genotyping has been used to resolve nosocomial A. flavus infections (32). Using the
RAPD technique in the context of postsurgical infection, a clinical isolate was shown to
be identical to two environmental isolates found in the operating room, suggesting a
nosocomial infection, with the limitation that only eight unrelated control strains were
tested (75). Six cases of A. flavus stomatitis in leukemia patients were investigated, and
RAPD profiles suggested a common source of infection (76). A repetitive DNA probe
was used to genotype two geographically and temporally related clinical isolates
responsible for cutaneous infection in neonates (77). A common profile between
clinical isolates and isolates recovered from an ambulance was observed, suggesting
contamination from material or fomites from the ambulance. MLP typing has also been
applied to A. flavus (78). Using MLP typing to test A. flavus infections in hematology
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wards, investigators found identical genotypes in the environment, suggesting noso-
comial transmission (79, 80).

Genotyping has also been used to decipher the various clinical presentations of A.
flavus infections. Using nine STR markers, Rudramurthy et al. analyzed 162 clinical
isolates recovered from 162 Indian patients over a 2-year period. Thirteen isolates were
shown to be mixtures of different genotypes, showing the advantage of MLP typing
over methods unable to detect mixtures of isolates. The remaining 149 pure isolates
were distributed in 26 clusters (81). No correlation between genotypes and clinical
presentation was observed (81). This high diversity of the isolates was also observed
when using six markers (82). These observations were consistent with what had been
previously reported about A. fumigatus infections (see above). However, Hadrich et al.
reported mixtures of genotypes in IA but unique genotypes in noninvasive disease (82),
which is contrary to what was observed with A. fumigatus.

For veterinary medicine, Hadrich et al. described identical genotypes between avian
isolates recovered from lung biopsy specimens and the environment of the birds using
VNTR markers (83). The same authors also reported a high genetic diversity between
human isolates and environmental and avian isolates (84), which is different from what
was reported for A. fumigatus, where differences between the genotypes of avian and
human isolates were not detected using STR markers (47).

Aspergillus terreus

Aspergillus terreus is increasingly reported as an agent of IA, especially in Austria (85)
and the United States (86), although it accounts for fewer than 10% of IA cases (2% in
France [32] and 4.4% [87] or 7.4% [88] in the United States), and represents 1.9 to 6.2%
of the colonizing molds in cystic fibrosis patients (89). In the late 1990s, typing of A.
terreus was performed, based mainly on RFLP or RAPD, with better discrimination using
RAPD (90). RAPD allowed the discrimination of unrelated European isolates, whereas
during follow-up of patients with cystic fibrosis or IA, isolates were genetically identical
using RAPD (91). Comparison between isolates from patients with hematological
malignancies and isolates collected from plants in the same hospital suggested these
in-hospital plants as a potential source of infection (92).

MLP typing has also been developed using four markers (93). Typing of 113 isolates
(from the eastern and western United States, France, Belgium, and Italy) revealed 111
different genotypes, thus confirming the great genetic variability of this organism (93).
A study based on 243 clinical and environmental isolates from the United States,
Austria, and other European countries suggested that three major genetic complexes
could be delineated using eight newly described STR markers, including either clinical
or environmental isolates. The authors suggest that the high incidence of IA due to A.
terreus could be related to a specific environmental exposure in the Inn valley (Tyrol,
Austria) (94).

The high diversity of this species was also observed using AFLP and MLP typing with
nine markers in India, with 75 distinct genotypes delineated from 101 isolates and 38
genotypes from 47 widely distributed isolates (95). This diversity was also observed in
five cystic fibrosis patients (89). Analysis of 115 isolates (15 to 39 isolates per patient)
in 45 respiratory samples revealed 17 distinct genotypes and three colonization pat-
terns (patients with one repeated dominant genotype, patients with repeated mixtures
of genotypes, and patients with transiently present genetically diverse isolates) (89).

FUSARIUM SPECIES

Fusarium spp. are ascomycetous molds with a worldwide distribution in nature, as
soil saprophytes or facultative plant pathogens. At least 20 different species complexes
of the genus Fusarium have been described (96). In recent years, several molecular
approaches (RFLP, RAPD, AFLP, MLST, and STR) have been applied to Fusarium isolates,
aimed at determining the genetic diversity of the genus. Most of these analyses have
been performed on environmental isolates (reviewed in reference 97). A multilocus
species/haplotype nomenclature system has been established (98–100) and is available
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at http://www.cbs.knaw.nl/fusarium/ (101) and http://isolate.fusariumdb.org/blast.php
(Table 1). The Fusarium solani species complex is the complex most frequently associ-
ated with human infection (60%), followed by the Fusarium oxysporum (10%), Fusarium
fujikuroi (10%), and Fusarium dimerum (5%) species complexes (100, 102).

As part of a keratitis investigation, 191 corneal and patient environment isolates
were analyzed by MLST. One haplotype of each of the three most common complexes
(F. solani species complexes 1-a and 2-d and F. oxysporum species complex 3-a)
accounted for more than 50% of the environmental and clinical isolates, leading to the
conclusion that the corneal isolates came from multiple environmental sources (103).
An epidemic of Fusarium solani keratitis involving 66 patients was also investigated in
Singapore using AFLP and RAPD (104). The authors observed a high polymorphism of
the infecting isolates, also making the hypothesis of a common infecting source
unlikely (104).

More recently, the genetic relatedness between F. solani species complex isolates
recovered from hematology and dermatology patients, as well as from environmental
isolates, mainly from water hospital sources, was studied (105). MLST analysis of 166
isolates demonstrated that F. solani species 2 (subtype 2-d) predominated in both
invasive and superficial isolates from patients, whereas F. oxysporum species complex-
33 accounted for more than 50% of environmental isolates (105). However, the limited
environmental sampling prevented any conclusion on the environmental isolates as
the cause of the disease (105).

Another MLST study of isolates from plumbing systems in the United States (n �

297) and patients (n � 717) found that the isolates mainly belonged to the F. solani
species complex (around 60%), both in the environment and in patients (106). STR
markers have been described for F. oxysporum and F. verticillioides (107–109) but have
yet to be applied to clinical studies.

SCEDOSPORIUM SPECIES

The species of the Pseudallescheria/Scedosporium complex (S. apiospermum, S. au-
rantiacum, S. boydii, S. dehoogii, and S. minutisporum) or relatives (Lomentospora
prolificans) (110) have been implicated in lung colonization and severe infections,
ranging from skin to brain lesions, especially in immunocompromised patients (111).
The genetic relatedness of Scedosporium species has been explored using various
techniques, including multilocus enzyme electrophoresis, RAPD, inter-simple-sequence-
repeat PCR, RFLP, and AFLP (reviewed in reference 112). Most of these studies have
been limited to the analysis of a small number of isolates from cystic fibrosis patients.
A study using MLST of 34 clinical S. apiospermum and S. boydii isolates from different
parts of Germany (113) confirmed the persistence of unique genotypes over time, as
previously reported using other methodologies (114, 115).

Two different MLST databases are currently available at the same site, one for S.
apiospermum and S. boydii and one for S. aurantiacum (Table 1). The Pseudallescheria/
Scedosporium species complex was also found to have a high degree of genetic
variation (114, 116–118), whereas L. prolificans seems to have low to no intraspecies
genetic heterogeneity (119).

CANDIDA YEASTS
Candida albicans

Candida albicans is the main yeast responsible for opportunistic fungal diseases.
Despite its diploidy and clonal reproduction, the yeast has a genomic plasticity capable
of generating high genetic diversity through various mechanisms, such as recombina-
tion (120) or chromosomal polymorphisms or gene replacement (121, 122), which
contribute to the genomic microvariation reported for multiple isolates from single
patients (123–126). Genotyping of Candida albicans using several methodologies has
been reported, including electrophoretic karyotyping, RFLP, Southern blot hybridiza-
tion, and RAPD, which have been reviewed elsewhere (6, 127, 128). However, MLP
typing and MLST have since superseded these methods.
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MLP typing was first developed for C. albicans in the late 1990s (129), with three
noncoding region loci (EF3, CDC3, and HIS3) on different chromosomes able to achieve
a DP of 0.97 (130). An allelic CDC3 ladder was developed to promote data portability
of C. albicans MLP genotyping. This CDC3 ladder can be used as an internal standard
for accurate allele assignment (18). Recently, a comprehensive protocol for C. albicans
genotyping using five markers amplified in duplex (loci CDC3 and EF3) or singly (loci
HIS3, CDR1, and STPK) has been reported (15). Others authors have used different
combinations of STR loci (131–135).

In 2003, a highly discriminant consensus MLST scheme was proposed (136), relying
on SNPs within seven housekeeping genes (137, 138) and comparison of the DSTs
obtained to those available in the MLST database (Table 1). Other authors have
proposed an SNP array typing system for C. albicans, which is based on a 79-SNP set
across 19 loci of the seven genes originally used for MLST analyses (139). Medical
investigations of invasive candidiasis, mainly candidemia, typically use either MLP or
MLST genotyping approaches. The main source of invasive C. albicans was confirmed to
originate from the endogenous mycobiota (6, 130, 140, 141). Indeed, identity between
isolates from blood and colonized anatomical sites was almost always observed,
leading to the conclusion that nosocomial transmission between patients is likely a rare
event (141, 142), even if an outbreak is suspected (143), although some authors have
reported nosocomial transmission in hospital environments (144–148). MLP typing has
also been used to track the origin of graft site candidiasis after kidney transplantation
(149). The results have shown that the contaminating genotype originated from the
donor and that the contamination occurred during organ recovery (149).

Since the endogenous mycobiota is the source of invasive infections, some
authors have investigated whether this flora is stable over time. The persistence of
the same strain type at different site locations or over long periods of time seems
to be the most common scenario (131). However, if an adaptive response to a
particular environment is needed, the strain may undergo microevolution (132, 141,
150–153). These genetic variations have been widely observed among closely
related strains and are mainly associated with loss of heterozygosity (120, 124, 125,
144). Only a few studies have reported strain replacement with a completely
different type of C. albicans (131, 132).

Genotyping is also widely used to assess the occurrence of antifungal resistance in
patients. When resistance appears within isolates of a given species, it is important to
determine whether the patients acquired a new genotype or whether resistance
occurred in the same genotype (154).

Several studies have aimed at identifying an association between a genotype and
some virulence traits. Clade-specific associations with different properties of C. albicans
isolates have been explored (128, 155). Odds et al. found one clade associated with
superficial infections and other clades associated with commensal carriage (156). In
contrast, using 11 STR markers with 147 isolates, L’Ollivier et al. failed to demonstrate
an association between a given genotype and its clinical or commensal origin, sup-
porting the hypothesis that isolates share the same overall pathogenicity whatever
their origin (157).

Candida dubliniensis

The ascomycetous diploid yeast Candida dubliniensis is phylogenetically closely
related to C. albicans. C. dubliniensis is an opportunistic human pathogen isolated
worldwide, mainly associated with mucous candidiasis in HIV-infected patients. C.
dubliniensis is also part of the commensal microbiota of the oral cavities (158). McManus
et al. used a combination of 10 MLST loci, previously validated for C. albicans, to
investigate the C. dubliniensis population structure and proposed a combination of
eight loci with a DP of 0.909 (159).

C. dubliniensis has also been recovered from seabird excrement, indicating a non-
human habitat (160, 161). Using MLST, a CDR1 gene polymorphism, and mating-type
analysis to study the genetic relatedness of avian and human isolates, McManus et al.
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concluded that the majority of avian isolates represent a distinct subgroup in the C1
clade but that some genetic profiles are shared between human and bird isolates,
suggesting a possible interspecies transmission (161).

Candida glabrata

Candida glabrata is a haploid ascomycetous yeast belonging to Saccharomyceta-
ceae. This yeast is a commensal of the human gut (162) and has a decreased suscep-
tibility to azoles and especially to fluconazole (163). After C. albicans, C. glabrata is the
second leading yeast species responsible for human bloodstream infection in Europe
and the United States (164–167). C. glabrata has a mainly clonal mode of reproduction,
with no sexual reproduction yet reported, although recombination events do seem to
occur in some subpopulations (168–170).

In 2003, Dodgson et al. described an MLST scheme for C. glabrata, consisting of six
single-copy housekeeping genes located on six separate chromosomes (171). From 107
clinical isolates, Dodgson et al. defined 30 STs grouped into five major clades and
identified 81 polymorphic sites among the 3,345 nucleotides sequenced (171). No
correlation was detected between STs and fluconazole susceptibility, although a geo-
graphical specificity was identified (171). An online database containing molecular
information on 209 isolates from Japan, Taiwan, Europe, South America, and North
America, corresponding to 68 STs, has been made available (Table 1). Geographical
clade specificity has been frequently observed using MLST typing but without evidence
of association between genotypes and clinical data (e.g., site of isolation and underly-
ing disease) or antifungal susceptibility (168, 172, 173).

STR markers have also been proposed for genotyping C. glabrata isolates (174–177).
In 2005, Foulet et al. described three STR markers using 138 independent clinical
isolates and reference strains with a low DP of 0.84 (174). The markers were shown to
be stable after 25 subcultures, and 21 allelic associations could be identified (174). The
authors failed to find any correlation between genetic profiles and clinical data (174).
Nevertheless, as already mentioned for results obtained using MLST (171), a skewed
distribution of the C. glabrata population has been described, with two genotypes
accounting for almost 50% of all isolates (174). Foulet et al. also tested several isolates
from different anatomical sites of the same patients and found that these isolates had
similar genotypes, suggesting that patients were infected with their own colonizing
genotype (174). These three STR markers (174) were complemented by three additional
markers with trinucleotide repeats to obtain a DP of 0.949 (177). In genotyping
epidemiologically closely related isolates from 36 patients, Abbes et al. observed
identical or highly related genotypes for 25 patients and a microvariation in four of
these patients (177), which had already been reported using Southern blot hybridiza-
tion (178). In 2007, six other STRs were evaluated using 127 C. glabrata isolates: 37
genotypes were identified, leading to a DP of 0.902, with three genotypes representing
52% of the isolates (175).

More recently, Brisse et al. described eight new STRs located in coding and inter-
genic regions, with a DP of 0.96 (24). By testing 198 isolates, 90 genotypes were
identified, and the clustering of isolates was congruent with that obtained using the
housekeeping gene NMT1 (171). These authors also compared MLP typing and MLST
and concluded that they are complementary but at distinct evolutionary time scales,
with MLP typing being a tool for fine-scale population genetic studies (24). In 2010,
Enache-Angoulvant et al. used these eight STRs to genotype 180 strains, including
blood isolates and isolates from the digestive tracts of nonhospitalized European
patients (28). The digestive tract isolates differed from the blood isolates because of
a higher genotypic diversity (28). They also demonstrated microevolution of isolates
from the digestive tract, confirming that C. glabrata is a component of the human
microbiota.

A commercial sequence-based service for typing C. glabrata has recently been
proposed (179), which associates two STR markers, one of which is similar to one
already described by Grenouillet et al. (175). The primers used for this commercial kit
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were not provided because of an ongoing patent. Correct amplification was observed
for 102 of the 104 isolates tested, with a DP of 0.95 (179). The size and sequences of the
STR amplification were analyzed not using capillary electrophoresis but using Sanger
sequencing. Four out of the five patients sampled from one hospital studied shared rare
alleles, which suggested nosocomial transmission. Since fluconazole resistance devel-
oped in these isolates but with different mechanisms, the authors hypothesized that
resistance was independently acquired after the interpatient transmission (179).

Recently, Dellière et al. genotyped 268 C. glabrata isolates using 10 STR markers
(180). The authors found that acquisition of resistance was associated with drug
exposure and not with mutations in the mismatch repair gene MSH2. The MSH2
sequence type was then associated with the MLP genotype (180), suggesting that MSH2
mutations would not directly be the cause of acquisition of resistance, at least for
fluconazole (180), in contrast to what has been suggested by other authors (181).

Using the same complete set of nine STR markers proposed by Brisse et al. (24),
Al-Yasiri et al. investigated whether gulls could be a reservoir for humans (182). In
analyzing 190 C. glabrata isolates from hospitalized patients and from gull droppings in
breeding areas along the Mediterranean seashore, the authors suggested that gulls are
a reservoir of C. glabrata with possible transmission to humans through environmental
contamination. The authors also suggested that other vertebrate hosts might be
reservoirs as well.

Candida tropicalis

Candida tropicalis is one of the four major Candida species responsible for candi-
demia worldwide, accounting for 4 to 20% of all candidemia cases (167, 183, 184) and
even the first species in India (185). C. tropicalis is an ascomycetous diploid yeast
belonging to the CTG clade (species in which CTG codes for serine instead of leucine)
of the Saccharomycetales (186, 187).

In the 1990s, the epidemiology and origin of fungal outbreaks due to C. tropicalis,
especially in neonatal intensive care units, were investigated using RFLP and pulsed-
field gel electrophoresis (188–192). The conclusion was that C. tropicalis frequently
originated from the patient’s own endogenous microbiota.

In 2005, Tavanti et al. described MLST using six loci and identified 88 DSTs, with a
DP of 0.994 (193). The authors identified three clades and one additional putative clade
containing flucytosine-resistant isolates (193). To date, 533 DSTs for 620 isolates are
available in the online database (Table 1). The conclusion of the MLST studies was that
C. tropicalis has clonal expansion, although recombination events could select one
successful clade associated with humans (194). Jacobsen et al. also found that multiple
isolates from a given patient shared the same MLST profile or showed evidence of
microevolution, such as loss of heterozygosity (194). Magri et al. studied the genetic
diversity of 61 isolates from 43 patients hospitalized in Brazil (195), reporting 39 DSTs.
Among the 14 patients with multiple isolates, seven had microvariation in a single gene
from sequential isolates and three had microvariation in six gene fragments. Finally,
they identified three isolates resistant to fluconazole but did not find any correlation
between this resistance and the isolate clustering (195).

To explore the origin of lower susceptibility to flucytosine, 130 C. tropicalis isolates
from positive blood cultures collected in the Paris (France) area were studied by
combining four MLST loci, SNPs on internal transcribed spacer (ITS) regions, and two
STR markers (196). A cluster of flucytosine-resistant isolates was linked to hematological
malignancies. Surprisingly, the patients infected with isolates of this cluster had a better
prognosis than patients infected with flucytosine-resistant isolates not belonging to
this cluster (196). The use of two STR makers and URA3 sequencing was proposed to
track this specific clone (196). Fluconazole-resistant isolates belonging to an MLST
cluster have also been identified in Taiwan (197).

Different studies have suggested an endogenous origin for infecting strains of C.
tropicalis and a mainly clonal mode of reproduction, even though parasexuality has
been recently described (198). MLST and MLP typing are useful for determining the

Typing Fungi of Medical Importance Clinical Microbiology Reviews

July 2017 Volume 30 Issue 3 cmr.asm.org 685

http://cmr.asm.org


possible origin of an outbreak, for example, in cases of contamination of grafts and/or
preservation solutions (199) or cases of acquired antifungal resistance due to thera-
peutic pressure (200). More recently, Wu et al. described six STRs with DPs varying from
0.70 to 0.95 in testing 65 clinical isolates. Although the global DP of the six STRs
combined was not provided, the authors concluded that their typing method was
similar to MLST for discriminating C. tropicalis isolates (201). No clinical data were
presented with this new set of STRs (201). A new set of eight STRs with a DP of 0.99 has
recently been reported (202).

Candida parapsilosis

Candida parapsilosis is a frequent colonizer of skin and a component of the human
microbiota. Candida parapsilosis belongs to the Lodderomyces-Spathaspora clade in the
family Debaryomycetaceae (203). Like C. tropicalis, C. parapsilosis belongs to the CTG
clade (186, 187). C. parapsilosis is frequently involved in invasive infection worldwide,
with a specific link with use of intravascular catheters, probably due to its ability to form
biofilms (204). This species is also frequently involved in neonates with nosocomial
outbreaks of infections involving manual transmission from health care workers, which
stimulates genotyping studies (205–208).

In 2005, differences in four gene sequences resulted in the identification of three
distinct species. The former C. parapsilosis groups I, II, and III were then named C.
parapsilosis, C. orthopsilosis and C. metapsilosis, respectively (209). The three groups
were physiologically and morphologically indistinguishable and were initially identified
on the basis of molecular data (209). Ultimately, the four MLST markers listed above
revealed a very low degree of variability for C. parapsilosis isolates (210). In 2010, Tavanti
et al. used AFLP to genotype C. parapsilosis isolates and found limited DNA sequence
variability, in line with previous DNA sequencing data, as well as a lower genetic
variability for C. parapsilosis than for C. orthopsilosis or C. metapsilosis, supporting the
hypothesis of a clonal expansion mode of reproduction of C. parapsilosis (211). Fur-
thermore, recent genomic analysis suggests that, in contrast to the case for the C.
parapsilosis population, events of recombination and hybridization between type I and
type II were observed in C. orthopsilosis isolates, resulting in novel subspecies (212).

Since the identification of Candida parapsilosis sensu stricto, 11 STR markers with
various sets of primers have been described. First, Lasker et al. used seven STRs (six
dinucleotide repeat markers [A to F] and one trinucleotide repeat marker [G]) to
genotype 42 isolates recovered from the United States (213). They obtained 30 geno-
types, a DP of 0.971, and a good concordance with Cp3-13 DNA hybridization (213). The
authors concluded that five of their markers (A, B, C, E, and G) were chromosomally
linked (206) and proposed to combine two of their markers, D and F, with three (CP1,
CP4, and CP6) of the four markers described by Sabino et al. in 2010 (214). Sabino et
al. described four STRs (CP1, CP4, CP6, and B5) and genotyped 236 clinical and
environmental isolates, recovered mainly from Portugal but also from France, Spain, the
United States, and Peru (214). Their results demonstrated that these STRs were suitable
for outbreak investigations and confirmed a likely clonal expansion mode of reproduc-
tion (214).

Since 2006, STR markers have been frequently used to study outbreaks of C.
parapsilosis, especially in neonates. Studies based on STRs, together with other tools
such as Cp3-13 DNA probes, suggested persistence of genotypes during recurrent
infection, horizontal transmission in intensive care units, and microevolution of C.
parapsilosis (7, 206, 208, 214–218).

Pichia kudriavzevii (Candida krusei)

Pichia kudriavzevii (synonym, Issatchenkia orientalis or Candida krusei) is an ascomy-
cetous yeast belonging to the Saccharomycetaceae that is responsible for almost 2% of
fungemia worldwide and frequently associated with solid tumor and solid organ
transplantation (167). This species is resistant to fluconazole and is associated with a
higher mortality in humans than C. albicans (167).
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In 1994, Carlotti et al. described the first RFLP method for genotyping P. kudriavzevii
(219). This study allowed the delineation of 12 clusters for the 48 distinct types
identified among the 58 isolates. Similar genotypes were found among multiple
isolates recovered from different anatomic sites of the same patients at different times,
suggesting an endogenous origin of the infecting isolates. In 2001, Shemer et al.
described a polymorphic degenerate STR (i.e., with intercaling base pair substitutions)
and suggested clonal reproduction using 50 clinical isolates and six reference strains
(220).

In 2007, using 129 isolates of different geographical origins, Jacobsen et al. (221)
described an MLST method to genotype P. kudriavzevii isolates based on the sequenc-
ing of six loci (Table 1). They identified 94 DSTs clustered into four subgroups by a
UPGMA dendrogram and found heterozygous sequences for some alleles, confirming
that P. kudriavzevii is a diploid organism for at least part of its genome. The authors did
not find evidence of geographical associations among the subtypes. A total of 60 SNPs
were identified, 30 of which were synonymous and 30 nonsynonymous, and among the
latter, 16 changes were found to be nontrivial (i.e., with side chains changing from
acidic to basic or from aliphatic to aromatic). By analysis of pairs of isolates from
different times or different sites recovered from seven patients, the authors confirmed
the hypothesis of an endogenous origin of the infecting strains.

The same MLST method was used in 2015 by Tavernier et al. to determine the
genotypes of successive C. krusei clinical isolates recovered from bone marrow trans-
plant patients (222). The authors observed microvariation of allelic profiles within a
single patient and demonstrated that genetically linked isolates acquired resistance to
echinocandins following exposure to micafungin and caspofungin.

CRYPTOCOCCUS NEOFORMANS/CRYPTOCOCCUS GATTII

Cryptococcus neoformans is a human fungal yeast causing life-threatening menin-
goencephalitis, mainly in patients with AIDS or other cellular immune defects (223).
Two varieties of C. neoformans have been described: C. neoformans var. grubii (serotype
A), recovered worldwide, and C. neoformans var. neoformans (serotype D), found mainly
in Europe (224, 225). C. neoformans and C. gattii, initially identified as two varieties, are
now considered two distinct species (226). Delineation of these two species and their
varieties is of the utmost importance, not only for the epidemiology of the yeast but
also for their medical impact, with C. gattii justifying a more intensive therapeutic
approach (227). Recently, seven species have been proposed within the Cryptococcus
neoformans/Cryptococcus gattii species complex (228). However, this classification is not
accepted by the whole community (229).

Since the 1990s, various methods have been tested to understand the C. neoformans
and C. gattii population structures (230). Multiple hypotheses on the biology, patho-
physiology, and epidemiology of cryptococcosis have been proposed, such as infection
by a unique strain, dormancy of C. neoformans isolates (231), geographic distribution of
the serotypes (232, 233), environmental origins (234) and descriptions of interspecies
and intervariety hybrids (235–237). Until recently, PCR amplification using M13 primers,
AFLP, and RAPD were principally used for typing C. neoformans/C. gattii isolates. These
methods described 10 major molecular types (236, 238–242) (Table 3). The VGII
genotype accounted for more than 97% of the isolates recovered during the Vancouver
Island outbreak, which could be further divided in two populations (VGIIa and a minor
VGIIb population) (243). This Vancouver Island outbreak started in 1999 (244), and in
August 2001, 12 cases of animal cryptococcosis were diagnosed, with a concomitant
increase in human cases within the same geographic area (245). Forty-five animal cases
from different mammals and 59 human cases, mainly among immunocompetent
individuals, were identified at the end of 2002 (245). Furthermore, C. gattii was isolated
from trees and soil.

In 2005, Fraser et al. genotyped C. gattii isolates involved in the Vancouver Island
outbreak using eight MLST unlinked loci (246). This MLST differentiated all four major
molecular types (VGI to VGIV) and also distinguished both subgenotypes, VGIIa and
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VGIIb. Fraser et al. also demonstrated that the major genotype was hypervirulent and
that the minor genotype was severely attenuated. Another study, using four STR
markers, found that strains genetically similar to those from the Vancouver Island
outbreak could be isolated in other parts of the world (247). In 2006, Litvintseva et al.
described new MLST markers and combined them with previously described markers to
propose a set of 12 MLST markers, dispersed across nine chromosomes (248). To
harmonize Cryptococcus genotyping, an international working group was formed in
2007, and a consensus set of seven markers was proposed (238). These markers are
unlinked and not under any selective pressure. A database has been established,
including data for serotypes A and D and C. gattii isolates (Table 1) (238).

In 2005, an abundance of cryptococcal STRs was reported once the C. neoformans
var. neoformans genome had been sequenced (249). In 2008, Hanafy et al. used three
STR loci to study serotype A isolates from 12 countries (250). The method yielded 30
different genotypes, with a DP of 0.992. Karaoglu et al. used seven STR markers with a
DP of 0.99 to study both varieties and an AD hybrid isolate of C. neoformans (249). The
genetic diversity of the VNI and VNII C. neoformans var. grubii molecular types was
found to be similar.

In 2010, Illnait-Zaragozi et al. described nine STRs to genotype 190 serotype A
isolates from Cuba, 122 from humans and 68 from pigeon guano (251). The authors
found 104 genotypes and achieved a DP of 0.993. The authors identified 11 microsat-
ellite complexes (MCs) corresponding to genotypes differing in up to two STR markers.
More than 70% of isolates from pigeon guano were clonally related, with the absence
of temporal and spatial variability. On the other hand, several MCs did not contain
environmental isolates, which suggests unidentified additional niches of C. neoformans
var. grubii possibly responsible for human infection. This also suggests that not all the
environmental isolates are equally pathogenic for humans. This hypothesis is supported
by evidence that pigeon isolates were less pathogenic than human isolates in a mouse
model (252).

Hagen et al. genotyped Dutch clinical isolates collected between 1977 and 2007 by
AFLP and MLP analyses (253). The AFLP typing provided three groups: AFLP1 (81.7%),
AFLP2 (12%), and AFLP3 (4.7%). The authors used the nine STRs previously described
for serotype A (251) and designed seven new STRs for serotype D. For 259 serotype A
isolates, the authors obtained 196 genotypes grouped into 11 MCs, including two novel
clusters, MC13 and MC14, with a DP of 0.994. Thirty-two genotypes were identified in
53 isolates of serotype D or hybrids (36 serotype D, 14 AD hybrid, and 3 BD hybrid), with
a DP of 0.966. The authors described some mixed infections (n � 7) due to isolates with
different genotypes. MC and genotype could not be associated with a geographical
origin or clinical data. However, some AFLP groups were associated with different
susceptibility to antifungal drugs: the AFLP1 group with lower susceptibility to ampho-
tericin B and AFLP2 isolates with lower susceptibility to flucytosine and higher suscep-
tibility to azoles (251).

TABLE 3 Different molecular types of Cryptococcus neoformans/Cryptococcus gattii
speciesa

AFLP type
RAPD
type(s) Serotype Actual nomenclature

Proposed
nomenclature

AFLP1 VNI A C. neoformans var. grubii C. neoformans
AFLP1A VNII
AFLP1B VNB
AFLP3 VNIII AD AD hybrids AD hybrids
AFLP2 VNIV D C. neoformans var. neoformans C. deneoformans
AFLP4 VGI B C. gattii C. gattii
AFLP6 VGIIa, VGIIb C. deuterogattii
AFLP10 VGIV, VGIIIc C. decagattii
AFLP5 VGIII C C. bacillisporus
AFLP7 VGIV C. tetragattii
AFLP8 BD BD hybrids BD hybrids
aSee references 228, 230, 231, 232, 233, and 234.
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Pathophysiology of Cryptococcus Species

Based on PCR fingerprinting profiles, Igreja et al. found that the majority of infec-
tions in Brazil were caused by a single strain (254). However, Desnos-Ollivier et al., using
an MLST method, showed that almost 20% of patients having cryptococcosis diag-
nosed in France were infected by multiple isolates (with different genotypes and/or
different serotypes) (255, 256). Similarly, Wiesner et al. found that 17% of Ugandan
patients were infected with multiple genotypes (257). Whatever the heterogeneity of
the infecting strains was, a major clinical point is that the patients had acquired the
infecting strain long before the onset of the cryptococcal meningitis (231). As deter-
mined using two methods to genotype strains recovered from patients who developed
cryptococcosis in France, the isolates from patients originating from Africa and having
left Africa for some time (median, 110 months) differed from those from patients
originating from Europe (231). This epidemiological finding has been recently corrob-
orated by biological evidence of dormancy during host interaction (258).

Genotyping has also suggested an association between C. neoformans genotypes
and virulence during human infection, although some reports do not confirm such
associations. In 2012, Wiesner et al., using eight MLST markers, analyzed 111 isolates
from cerebrospinal fluid (CSF) samples (107 of serotype A and 8 AD hybrids) from
Ugandan AIDS patients before receiving antiretroviral therapy (257). The mortality was
different according to the MLST groups, which suggested that cryptococcal strain
variation could play an important role in human immune responses and, as a conse-
quence, in mortality. Although based on a limited number of cases, the Ugandan hybrid
strains were associated with an increased mortality (257), which is inconsistent with
other reports (255). Other authors genotyped C. neoformans var. grubii isolates from
CSF samples from 230 South African HIV-infected patients between 2005 and 2010
(259). The authors also identified genotypes associated with phenotypic features. The
VNII group isolates had a significantly better CSF survival and a higher laccase activity
than VNI and VNB isolates. However, a study of 54 clinical isolates (serotype A, mating
type alpha) from France did not show any correlation between DSTs and clinical data
or in vitro data (i.e., phagocytosis index and intracellular proliferation) (260, 261).

Other studies focused on the correlation between the immune status of patients
and the infecting genotype. Choi et al. genotyped 78 isolates from patients hospitalized
for cryptococcosis in different provinces of the Republic of Korea between 1990 and
2008 using MLST and PCR fingerprinting typing (262). The HIV-positive patients were all
infected with genotype VNI, whereas the remaining patients were infected mainly with
genotype VNIc, previously identified as the major genotype in China (263). Most of the
VNIc strains were also associated with HIV-negative patients in Korea (262), similar to a
subcluster (VNIgamma) identified in HIV-negative patients in Vietnam (264). Similarly,
Illnait-Zaragozi et al. reported an association between a specific genetic cluster and
HIV-negative patients in Cuba (251). Therefore, it may be possible that some Crypto-
coccus genotypes could be better adapted to patients with specific underlying immu-
nodepression or that these specific groups of patients could have been exposed more
preferentially to these genotypes.

From a medical point of view, the genetic analyses discussed above have allowed a
better delineation of the eight major molecular types of C. gattii and C. neoformans
which are now validated. Their identification, which is important for medical manage-
ment, can be achieved using matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS), currently routinely used in laboratories for fungal
species identification (228, 265).

PNEUMOCYSTIS JIROVECII

Pneumocystis species belong to Taphrinomycotina, one of three subdivisions of
ascomycetous fungi that can infect various mammalian hosts. Pneumocystis jirovecii is
the species specifically associated with humans and could be considered a commensal
(266). Almost all individuals are exposed to P. jirovecii before reaching the age of two
(267–271). Whether pneumocystis pneumonia (PCP) in immunocompromised individ-
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uals comes from recently acquired or from dormant organisms, or both, is still debated.
Indeed, Pneumocystis DNA can be detected in patients without PCP, leading to the
concept of carriage (272). Moreover, the genotypes from PCP patients and carriers did
not differ, and carriers can harbor P. jirovecii for long periods (273). Thus, all carriers, and
probably all individuals, can potentially act as a reservoir and transmit the fungus to
immunocompromised hosts, as extrapolated from transmission experiments in mice
(274, 275). All these studies on the pathophysiology of P. jirovecii depend on genotyp-
ing, which must be performed directly on clinical specimens because of the absence of
simple culture procedures (276). For carriers with low fungal loads, the amount of DNA
can be too low for correct amplification for typing, introducing potential biases if low
fungal loads are associated with some genotypes (21).

Since airborne transmission between humans is the currently accepted hypothesis
(277) with ascus (previously called cyst) as the most probable infecting agent, as
demonstrated in mice (278), genotyping of clinical respiratory specimens has been
used to investigate potential nosocomial PCP outbreaks. The first studies were based on
PCR-SSCP of nuclear and mitochondrial loci (279–281). PCR-SSCP was then replaced by
direct DNA sequencing using an MLST scheme (282). MLST confirmed the presence of
identical genotypes recovered from different patients during outbreaks (283–285). An
optimized MLST scheme restricted to three loci (nuclear and mitochondrial genes)
achieved a DP of 0.987 (286). Similarly, studies using ITS sequencing with subcloning of
the PCR products (287) and multitarget SSCP (288) suggested that epidemic cases were
mostly due to a single genotype. These results were obtained with highly discriminant
methods, since the number of genotypes was estimated at 43 using the SSCP method
(289) and as many as 60 using ITS sequencing methods (290). A common nomenclature
for the various alleles of these MLST markers has led to the creation of a website
allowing identification of alleles to harmonize the results (Table 1).

Besides investigation of clustered cases, genotyping has been used to characterize
the organisms present in a given individual, and all the typing methods have reported
the presence of mixtures of two or more genotypes in single patients. The range of
mixture detection varied according to the method used, from a few percent using
Sanger DNA sequencing to about 70% using SSCP (21, 281, 291–296). When focusing
on mitochondrial polymorphisms using SNaPshot minisequencing, a method based on
one-nucleotide extension of primers developed for the analysis of SNPs, mixed mito-
chondrial genotypes were associated with the highest fungal loads observed, suggest-
ing either coinfections with several genotypes or accumulation of mutations due to a
high replication rate of the microorganism (21). This minisequencing method also
showed that the minority P. jirovecii populations below 20% are not detected when
using Sanger sequencing, a method not sensitive enough to detect minority alleles (21).

A specific clinical issue has emerged with the use of trimethoprim-sulfamethoxazole
(co-trimoxazole) prophylaxis of patients with PCP and AIDS. Although dihydropteroate
synthase (DHPS) mutations have been reported in PCP treatment failure, suggesting
selection by drug pressure, the same mutations have also been detected in PCP
patients not receiving co-trimoxazole (297). Therefore, rather than selection pressure by
sulfa prophylaxis, the presence of DHPS mutations could be explained by incidental
interhuman transmission and may serve as an epidemiological marker rather than a
marker of resistance (298, 299).

Molecular methods for P. jirovecii genotyping are continually evolving. Recently,
implementation of MLP methods (300, 301) and next-generation sequencing (NGS)
(302) has allowed easy detection of low abundances of coinfecting types, with ratios of
about 1:50 and 1:1,000, respectively.

DERMATOPHYTES

Dermatophytes are very common fungi responsible for hair (tinea capitis), skin (tinea
corporis), and nail (tinea unguium) diseases, the taxonomy of which has recently been
widely modified (303). Concern has been raised about the high propagation rate of
Trichophyton tonsurans (304), with outbreaks in pediatric care centers (305, 306) and
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among wrestlers (307). Transmission can occur through hairdressing (308) or direct
contact with an infected individual.

An epidemic involving 21 individuals, including health staff members corresponding
to repeated admissions of an infected child, was investigated using PCR-RFLP of three
different loci (ribosomal DNA nontranscribed spacer and the enzymes alkaline protease
and leucine aminopeptidase). The authors concluded that the infected child was the
source of infections for the other people, although a formal DP of the typing system
was not established (306). The typing system was completed using sequence variation
in 10 additional gene loci using PCR-RFLP and testing of 198 isolates from 14 countries
(309). This complete set of markers was used to study transmission of T. tonsurans
among wrestlers (307). The authors assessed the clonal nature of the T. tonsurans strain
infecting 14 of the 29 wrestlers tested (307). The same PCR-RFLP markers were used to
study single and mixed infections in children (310). Colonies obtained from 252
children were genotyped, and 57 children had two distinguishable strains, underlining
the possible complexity of typing when mixed genotypes are simultaneously present in
clinical samples (310). Similarly, an outbreak of Microsporum canis, a zoophilic species,
affecting 42 children was investigated using RAPD, amplification of ribosomal DNA
nontranscribed spacer, and ITS sequencing. The authors concluded that there was a
common source of the tinea capitis among the children, although the typing method
was not evaluated with independent isolates (311). Another PCR-based method using
primers consisting of trinucleotide repeats has been used to determine whether the M.
canis isolates were shared between patients and their cat (312).

ENDEMIC MYCOSES
Talaromyces marneffei

The thermally dimorphic fungus Talaromyces marneffei (formerly Penicillium marnef-
fei) is a member of the subgenus Biverticillium and an emergent pathogen affecting
humans and animals (313). Its endemicity in tropical areas of Asia (Thailand, northeast-
ern India, China, Hong Kong, Vietnam, and Taiwan) combined with the emergence of
HIV/AIDS changed the frequency of this disease, making it a significant health problem
in those areas.

Initial studies using an MLST approach were designed to distinguish between
clinical and environmental isolates from Thailand, China, and Hong Kong (314). Haploid
genotypes were assigned using sequences of five polymorphic loci with a high DP of
0.949. The MLST analysis of 24 isolates found a geographical separation between the
samples from Thailand or China, but with some mixed geographical clusters (314). In
parallel, an MLP typing system identified 23 genetic loci amplified among 23 clinical
isolates (315). The typeability and reproducibility of the typing system were high (99.6%
and 100%, respectively). The analysis of 21 independent isolates resulted in 19 unique
genotypes with a DP of 0.995. The observation of a single allele for a given locus for
each strain suggested that T. marneffei is haploid. In addition, the extensive multilocus
linkage disequilibria shown by the high index of association (3.414; P � 0.01) suggested
a clonal mode of reproduction of the fungus (315).

T. marneffei is thought to be transmitted primarily by inhalation. In the absence of
a known environmental reservoir, Huang et al. and Cao et al. aimed to determine
whether the human disease was acquired principally from rodents (e.g., bamboo rats of
the genera Rhizomys and Cannomys) or whether it was directly acquired from the
environment, independently of animals (316, 317). Six STRs were chosen from the panel
described by Fisher et al. (318) to study 43 rodent isolates and 40 human isolates (317).
Human T. marneffei isolates were found to be similar to those infecting rats. However,
in the absence of environmental isolates sampled, the authors could not discriminate
between human contamination directly from the environment or following amplifica-
tion of infectious dispersal stages by rats (317).

Histoplasma capsulatum

Histoplasma capsulatum is a haploid ascomycetous fungus with a worldwide distri-
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bution (319) that causes systemic mycosis in mammals, including humans. This thermo-
dimorphic pathogen is found in its mycelial phase in rich soil, particularly soils associ-
ated with bird and bat guano. In humans, H. capsulatum proliferates as an intracellular
yeast in macrophages and monocytes (320, 321). Historically, three varieties were
described based on morphological and pathogenic characteristics: H. capsulatum var.
capsulatum, H. capsulatum var. duboisii, and H. capsulatum var. farciminosum (321).

Several genotyping assays performed since the 1980s have revealed considerable
polymorphisms among isolates from particular geographical locations (322). An MLST
study showed that the H. capsulatum complex was not monophyletic and consisted of
seven phylogenetic species, with an African clade including H. capsulatum var. duboisii
but also isolates morphologically identified as H. capsulatum var. capsulatum (323).
There is, however, no consensus genotyping method for this fungus. Although out-
breaks of histoplasmosis are regularly reported (324), the current genotyping studies
are more focused on the genetic variation and environmental dispersion of H. capsu-
latum (325).

Blastomyces dermatitidis

Blastomyces dermatitidis is a haploid thermo-dimorphic fungus responsible for
pulmonary and disseminated infections in humans and other mammals (dogs, bats, and
sea lions). Blastomycosis is endemic to regions of North America (the Ohio and
Mississippi River valleys, the Great Lakes, and the St. Lawrence River) and has also been
described in Africa, India, and South America. The infection occurs after inhalation of
airborne conidia disrupted from wet soil or organic material (326). The ecological niche
of B. dermatitidis remains poorly defined, although the disease appears to be more
frequent along waterways (327, 328).

Outbreaks of blastomycosis have been associated with work-related or leisure activities
and with exposure to moist soil enriched with decaying vegetation (326). An RFLP study
using various rRNA probes of 59 isolates of B. dermatitidis collected from 15 regions (in
the United States, India, Africa, and Canada) found high genetic similarity among
isolates, with the definition of only three major groups (329). With this RFLP typing
method, the soil isolates could not be deemed responsible for the majority of cases
during an outbreak in Eagle River, WI (329). An additional RFLP study of 116 isolates
explored the polymorphism in the promoter region of the BAD-1 gene (330) and
described two new genetic groups in addition to those previously identified (329).

Using an MLP typing scheme (328), the relationship between genetic groups and
clinical symptoms in 227 clinical isolates from the outbreak in Eagle River, WI, was
evaluated (331). In univariate analysis, pulmonary-only infections and fever were more
likely associated with group 1 isolates, while disseminated disease, older patient age,
and comorbidities were more likely associated with group 2 isolates characterized by a
high allelic diversity (331). However, in multivariate analysis, only disease onset to
diagnosis of more than 1 month, older age at diagnosis, and smoking status remained
predictors for group 2 infections (331). Although this study revealed clinical differences
between the two genetic groups, the molecular basis of these differences was not
resolved (331).

Paracoccidioides Species

The genus Paracoccidioides is responsible for the endemic systemic fungal infection
paracoccidioidomycosis. According to multilocus genealogy, this genus consists of two
haploid thermo-dimorphic species: P. brasiliensis (332, 333) and the recently defined
species P. lutzii (334, 335). Paracocciodiomycosis is restricted to Latin America, from
Mexico to Argentina, with the highest prevalence in Brazil, Colombia, Venezuela, and
Argentina (336, 337). Autochthonous human paracoccidioidomycosis has been re-
ported in some countries (e.g., Chile, Guyana, Surinam, French Guyana, Belize, and
Nicaragua) (338). Paracoccidioidomycosis can be acquired by the inhalation of envi-
ronmental infectious propagules, with the lung as the portal of entry, from where the
fungus can disseminate as a yeast-like parasitic form (339). Few reports have been
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made about the isolation of Paracoccidioides spp. in the environment in zones of
endemicity. These species have been repeatedly recovered from armadillos (Dasypus
novemcinctus and Cabassus centralis), which are considered natural reservoirs (340,
341). The identification of the environmental habitat of Paracoccidioides species is still
under study. Although STR markers (333) are available for this species, they were used
for phylogeny, and to our knowledge no report deals with a specific clinical question.

Coccidioides Species

Coccidioides immitis and Coccidioides posadasii are the two thermo-dimorphic fungi
responsible for the animal or human mycosis coccidioidomycosis. Recent studies have
evidenced that genetic exchange between these species is possible (342). C. immitis is
endemic in central and southern California, whereas C. posadasii is present mainly in
Arizona and extends to Texas and New Mexico (343). C. posadasii can be found outside
the United States in parts of Mexico and Central and South America (343). The habitat
of Coccidioides spp. is mainly the warm, arid, and desert regions with annual rainfalls
not exceeding 60 cm and with very hot summers (344). The species have been
recovered from soil and are frequently associated with rodents and Amerindian burial
places in desert zones of the southwest of the United States (345). The major route of
infection leading to a chronic pulmonary disease is the inhalation of wind-borne
arthroconidia, with subsequent spherule transformation once inside the host. Coccid-
ioidomycosis may disseminate and become fatal in those cases (346).

The first typing approaches to explore the intraspecific relationships of C. immitis
were performed in the 1990s using RFLP (347, 348) and genealogies of five nuclear
genes (349). The authors thus distinguished Californian isolates from non-California
isolates (349). Later, Fisher et al. corroborated this clustering using nine STR loci among
167 clinical isolates from all known regions of endemicity, including Venezuela, Mexico,
and Brazil (350). The authors formally recognized that the monotypic genus consisted
of two closely related species and therefore named the new species C. posadasii (350).
The same nine-STR scheme was applied to 129 clinical isolates of Coccidioides spp. to
address the presence of a hypervirulent strain due to an increased rate of coccidioid-
omycosis in southern Arizona (351). The majority of isolates (92%) were identified as C.
posadasii. The high level of STR variation among these isolates and the absence of a
particular genotype pattern did not support the hypothesis of contamination with a
hypervirulent strain as previously suspected (351). In 2014, Luna-Isaac et al. also
applied the same nine-STR scheme to establish the predominant Coccidioides
species in Mexico, to delineate the current geographical locations of both Coccid-
ioides species, and to identify a possible correlation between clinical symptoms and
a specific genotype (352). One hundred sixty isolates (155 clinical, 4 environmental,
and 1 animal) were recovered in Mexico between 1957 and 2010. C. posadasii was
the predominant species (82%), but no significant correlation of genotypic groups
with patients’ characteristics was found.

PERSPECTIVES ON NGS

The development of genotyping methods can be time-consuming and demand a
minimum of DNA data on the investigated genomes. Moreover, MLST or MLP focuses
on the diversity of a restricted number of loci. Consequently, if alleles of those markers
are different between two isolates, it is easy to exclude identity between these isolates.
In contrast, even with a very discriminant method, there is always the risk of concluding
that there is similarity between individuals just because the informative loci are not
included in the panel tested, and only whole-genome comparison has the potential for
answering this question of identity between two isolates. The current trend is therefore
to move to next-generation sequencing (NGS) to pursue genetic analyses at the
individual level, which eventually can be achieved at lower costs than to search for
new MLST or STR markers and to validate each of them for genotyping. NGS is also
the most rapid way to identify SNPs in the genomes of species not already
investigated. These new methods are diverse but are currently dominated by two
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options for medical applications: (i) PCR amplification of marker sequences with
subsequent high-throughput sequencing of the constructed amplicon library and
(ii) whole-genome sequencing (WGS) of isolates.

High-throughput sequencing of amplicons provides the possibility to upgrade MLST
to a new-generation MLST. This was applied to C. neoformans and allowed sequencing
of 96 isolates in one run, decreasing costs and time (353). A recent report describes the
polymorphism in portions of the mitochondrial large-subunit rRNA gene, ITS2 region,
and DHFR gene of the P. jirovecii genome using ultradeep pyrosequencing and shows
that the polymorphism rate is higher than that previously described using less-sensitive
methods (302).

WGS typing allows analysis of the entire collection of polymorphisms within the
genomes of each studied isolate. This has been used to understand the diversity of C.
gattii isolates in the Pacific Northwest. Results of the analysis were comparable to those
obtained by MLST (354) but with a greater resolution among isolates, with detection of
up to 1,512 SNPs along the genome in isolates harboring identical MLST sequences
(354). Comparative genomics of C. gattii isolates allowed recognition of four lineages
(VGI, VGII, VGIII, and VGIV), with the identification of VGII as the ancestral C. gattii
population (355, 356).

There are now an increasing number of publications reporting WGS data to under-
stand nosocomial transmission and to investigate outbreaks (357). WGS was applied in
a case of organ donor-transmitted coccidioidomycosis. The results showed a high
genetic similarity between the three genomes studied with only three SNPs identified
among them, suggesting that the organ donor was the source of the three C. immitis
isolates recovered from the three transplant recipients (358). WGS has been used to
confirm genetic identity between environmental and infecting isolates of C. immitis in
Washington State (359). WGS determined that a single strain of Exserohilum rostratum
was responsible for the contamination of methylprednisolone batches that caused
human infections in the United States (360), with only 8 SNPs detected among the
outbreak isolates within a genome of 33.8 Mb. WGS demonstrated the diversity of strains
responsible for a tornado-associated cluster of wound mucormycosis due to Apophy-
somyces trapeziformis (361). An outbreak of Saprochaete clavata in French leukemic
patients with a high mortality rate was investigated using WGS (362). A single clone was
responsible for the outbreak (362). A Mucor circinelloides var. circinelloides outbreak of
invasive wound infections in a burn unit was investigated using WGS (363). Analysis of
the whole sequences of 23 isolates and 1 reference strain suggested that the patients
were infected by different genotypes, supporting that the contaminating source(s),
which unfortunately was not identified, would contain several different strains (363).
Another Mucor circinelloides outbreak, originating from contaminated yogurt products
and responsible for digestive symptoms in more than 200 consumers, was reported,
and one isolate of this outbreak was analyzed (364). WGS confirmed that the studied
isolate was close to the M. circinelloides var. circinelloides subgroup, which is more often
involved in human diseases than the other M. circinelloides subgroups (364).

WGS has also been used to investigate azole resistance not due to the cyp51A
mutations, leading to the identification of the putatively involved P88L mutation in the
hapE gene (365). For the azole-resistant TR34/L98H A. fumigatus isolates, WGS was used
to determine their genetic diversity. WGS revealed that country and continental genetic
diversities were of a similar scale, with the exception of India, where highly related
genotypes were observed. This study confirmed that TR34/L98H isolates recombined
and that the TR34/L98H allele was able to segregate in various genetic backgrounds
(366).

WGS was used for investigating serial clinical isolates of C. neoformans from a patient
with AIDS with relapsing episodes of meningoencephalitis. These isolates presented
phenotypic differences, despite having highly conserved genomes. WGS highlighted in
the second isolate the loss of a predicted transcriptional regulator gene involved in
melanin and capsule formation, carbon source use, and dissemination in the host,
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which was consistent with the modifications of the phenotype between the two
isolates (367).

CONCLUSION

The genotyping of medically important fungi is currently done almost exclusively
using MLP and MLST approaches. These methods are technically robust (15), with
differences between them (Table 2), and several schemes are available for various
fungal species (Table 1). The choice between these methods depends on the available
equipment, the skill of each team, the species being investigated, and the clinical
question. When investigating a disease outbreak, it can be sufficient to know that two
isolates are different, thereby excluding cross-contamination or a common source,
whereas multiple loci should be investigated when aiming to prove that two isolates
have the same genotype. For molds, MLP is more discriminant than MLST and is now
preferred for epidemiological studies. For yeasts, MLP seems, at present, to be the most
robust genotyping method to discriminate isolates in cases of outbreak or nosocomial
infection, whereas MLST is more effective for the determination of long-term genetic
relatedness or population structure (24, 211, 213). Moreover, data banks are available
for MLST but not for STR markers (Table 1).

Further typing studies could clarify the correlation between strain genotypes and
geographical location and body site of isolation, colonization, or infection. The collec-
tion and identification of environmental isolates from patients’ surroundings will be
useful for exploration of infection sources. In this context, the use of NGS technologies
has great potential for the investigation of new species and genetic variability among
isolates. WGS and comparison of isolates of rare fungal organisms are nowadays an
easy and quick method when adequate bioinformatics pipelines are available and
validated. However, for rare and usually poorly known fungal organisms, the analysis of
genomes of isolates involved in an outbreak still requires knowledge about the
plasticity of the genomes and the rate of mutation acquisition in the environment and
upon interaction with host in noninvasive or invasive infections.
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